Pair of noted physicists contemplate future of cosmology after detection of primordial

center_img More information: Next Steps for Cosmology, Science 9 May 2014: Vol. 344 no. 6184 pp. 586-588. DOI: 10.1126/science.1252724AbstractExperiments on the ground, balloons, and satellites have revolutionized our knowledge of the Big Bang by measuring the fossil glow from the first instants of the universe, the cosmic microwave background (CMB) radiation. Infinitesimal fluctuations in the photon temperature have been found, revealing the seeds of all large-scale structures, from galaxies to clusters of galaxies and superclusters. The detected wiggles in the distribution of the temperature fluctuations measure the gravitational coupling between dark matter, baryons, and radiation as the universe emerged from its opaque fireball phase. These measurements, pioneered by the Cosmic Background Explorer (COBE) (1) and then greatly refined by its successors, the Wilkinson Microwave Anisotropy Probe (WMAP) (2) and Planck (3) satellites, have allowed precise determinations of the key parameters of our universe—age, dark matter, dark energy content, and even the number of different types of neutrinos, as well as the strength and distribution of the primordial density fluctuations. Less than two decades ago, it was debated whether the major constituent of the universe, dark energy, even existed. Now its contribution is measured to an accuracy of a few percent. © 2014 Phys.org Explore further This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more

Continue reading